Comparison of LCST-transitions of homopolymer mixture, diblock and statistical copolymers of NIPAM and VCL in water.

نویسندگان

  • Lei Hou
  • Peiyi Wu
چکیده

The LCST-transitions of linear, well-defined polymers of N-isopropylacrylamide (NIPAM) and N-vinylcaprolactam (VCL), including a homopolymer mixture, diblock and statistical copolymers, in water are explored and compared by applying turbidity and FTIR measurements in combination with two-dimensional correlation spectroscopy (2Dcos). Only one transition is observed in all polymer systems, suggesting a dependent aggregation of poly(N-isopropylacrylamide) (PNIPAM) and poly(N-vinylcaprolactam) (PVCL) parts in the phase transition processes. With the help of 2Dcos analysis, it is discovered that the hydrophobic interaction among C-H groups is the driving force for simultaneous collapse of the two distinct thermo-responsive segments. Additionally, the delicate differences within the LCST-transitions thereof have been emphasized, where the phase separation temperatures of the homopolymer mixture and the diblock copolymer are close while that of the statistical copolymer is relatively higher. Moreover, both diblock and statistical copolymers exhibit rather sharp phase transitions while the homopolymer mixture demonstrates a moderately continuous one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermo-Induced Self-Assembly of Responsive Poly(DMAEMA-<italic>b</italic>-DEGMA) Block Copolymers into Multi- and Unilamellar Vesicles

A series of thermoresponsive diblock copolymers of poly[2-(dimethylamino)ethyl methacrylate-block-di(ethyleneglycol) methyl ether methacrylate], poly(DMAEMA-b-DEGMA), were synthesized by reversible addition−fragmentation chain transfer (RAFT) polymerizations. The series consist of diblock and quasi diblock copolymers. Sequential monomer addition was used for the quasi diblock copolymer synthesi...

متن کامل

Micelle shape transitions in block copolymer/homopolymer blends: comparison of self-consistent field theory with experiment.

Diblock copolymers blended with homopolymer may self-assemble into spherical, cylindrical, or lamellar aggregates. Transitions between these structures may be driven by varying the homopolymer diblock molecular weight or composition. Using self-consistent field theory (SCFT), we reproduce these effects. Our results are compared to x-ray scattering and transmission electron microscopy measuremen...

متن کامل

Regulating block copolymer phases via selective homopolymers.

The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer is immiscible with the B-blocks but strongly attractive with the A-blocks. The effect of homopolymer content on the order-order phase transitions is analyzed. I...

متن کامل

Ordering at two length scales in comb - coil diblock copolymers consisting of only two different monomers

The microphase separated morphology of a melt of a specific class of comb-coil diblock copolymers, consisting of an AB comb block and a linear homopolymer A block, is analyzed in the weak segregation limit. On increasing the length of the homopolymer A block, the systems go through a characteristic series of structural transitions. Starting from the pure comb copolymer the first series of struc...

متن کامل

Effects of architecture on the stability of thermosensitive unimolecular micelles.

The influence of architecture on polymer interactions is investigated and differences between branched and linear copolymers are found. A comprehensive picture is drawn with the help of a fluorescence approach (using pyrene and 4HP as probe molecules) together with IR or NMR spectroscopy and X-ray/light scattering measurements. Five key aspects are addressed: (1) synergistic intramolecular comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 11 14  شماره 

صفحات  -

تاریخ انتشار 2015